Processing Recalcitrant Feedstocks in a Biorefinery

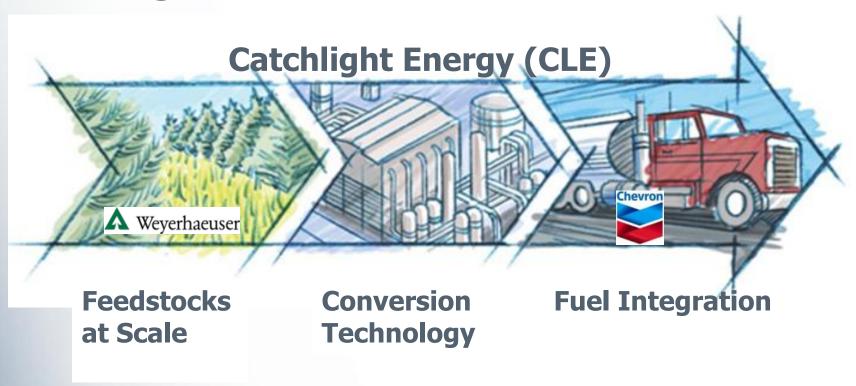
Johnway Gao
Dwight Anderson
Benjamin Levie
Paul Spindler

October 10–12, 2012

For Bio Pacific Rim Summit on Industrial
Biotechnology and Bioenergy
Vancouver BC, Canada Copyright 2012, Catchlight Energy LLC

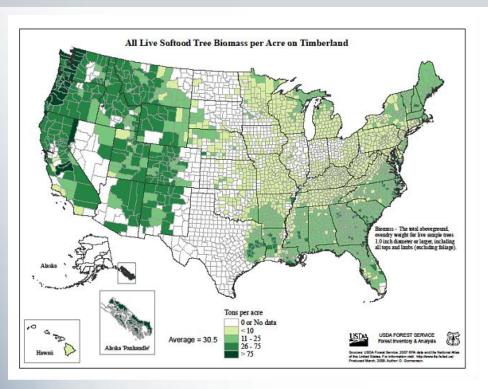
A Chevron | Weyerhaeuser | Joint Venture

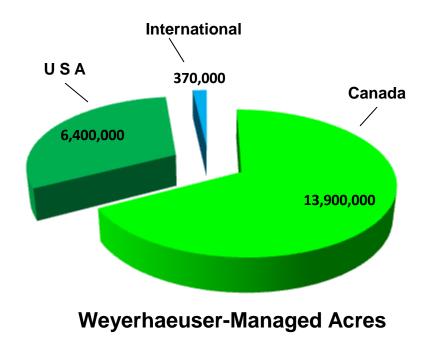
Outline



- Catchlight Energy's mission
- Biomass management
 - > Forestry sustainability
 - Cellulosic feedstock supply
- Cellulosic fuel off-taking from third parties
- CLE Developments
 - Sugar technology
 - Bio-oil to "drop-in" hydrocarbon fuels.
- Summary

Mission: Commercializing Sustainable Forest Biomass to Fuels




End-to-End Value Chain Solution Leverages the Strengths of Two Natural Resource Leaders

Softwood - High Availability/High Recalcitrance

Weyerhaeuser Annual Report 2011

The use of softwood is of high value to the biofuel industry, but it remains a difficult feedstock for most pure bio-conversion processes.

Catchlight Energy (CLE) - What we do

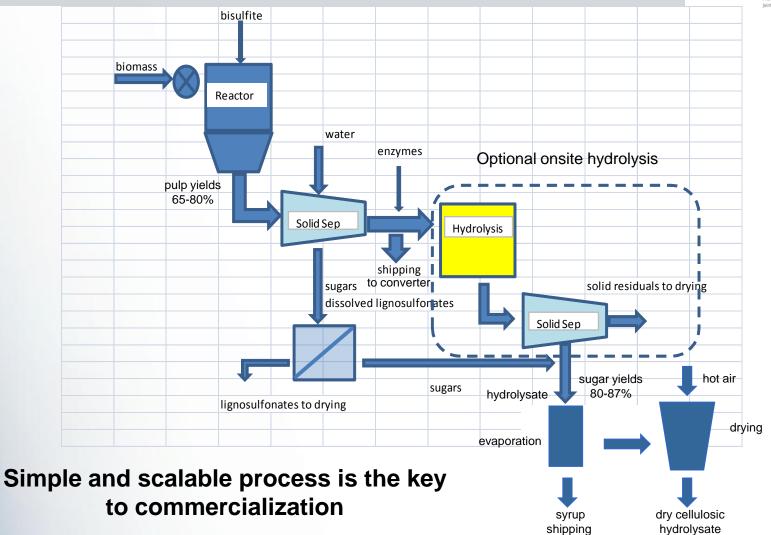
Feedstock supply and product offtake for biofuel facilities (Wrap services)

CLE to provide woody feedstock & fuel integration for KiOR's 1st plant

Unparalleled sustainability science

- Large-scale studies (1200 acres)
- Identify ecosystem effects
 - Soils/nutrients
 - Water quality/quantity
 - Wildlife/biodiversity
 - Carbon life cycle analysis

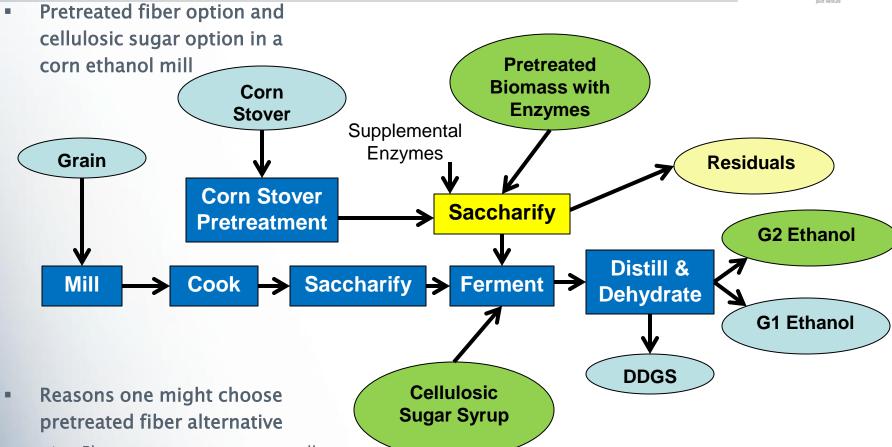
CLE Sugar Technology



- Adaptable to existing infrastructure modify or retrofit
- Scalable from pilot operations
- Feedstock flexible softwood, hardwood, and herbaceous biomass

Cellulosic sugar options **Forest Residuals Pretreatment Hydrolysis** and Sugar **Production Switchgrass** Cellulosic Sugar Syrup

Process Flow Diagram


shipping

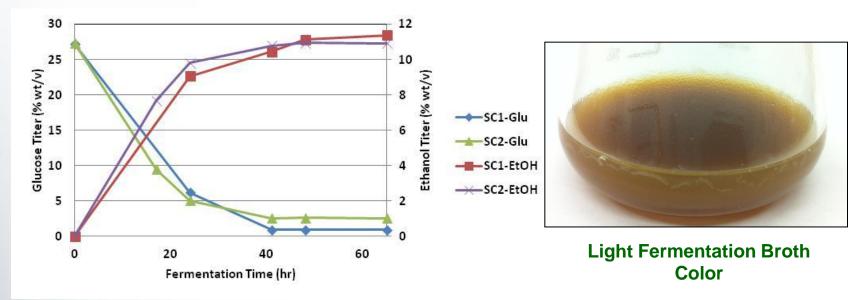
to converter

to converter

Cellulosic Biomass Addition

- Plan to use corn stover as well
- Residuals available for a boiler
- Increase hexose content

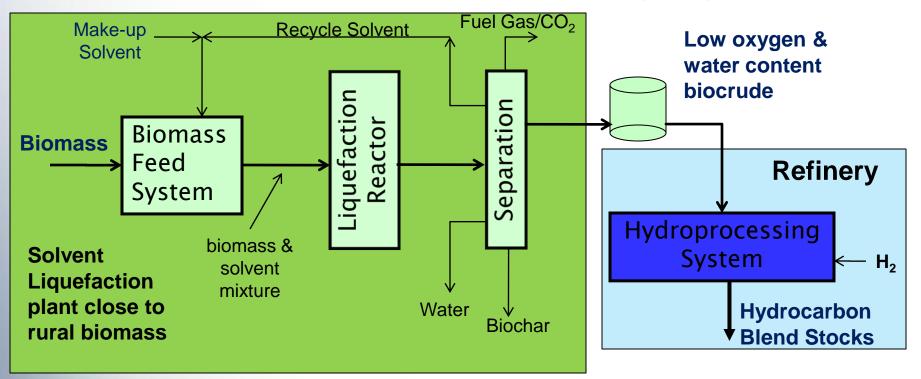
Feedstock Intermediate Options


Implications of cellulosic feedstock choices: corn stover vs. CLE softwood options

	Corn Stover	CLE Pretreated Biomass	CLE Cellulosic Sugar Syrup	CLE Solid Sugar
Storage	Keep dry	Keep wrapped	Need tank	Keep wrapped
Availability	November– April	Year-round		
Enzyme Use	Add in plant	Can be included	Not needed	
Sugar Conc.	12%		Up to ~75%	80-95%
% C6 sugars (balance is C5)	60%	93% due to softwood composition		

CLE pretreated biomass or sugar options are convenient and easy to use

Cellulosic Sugar Syrup Ferments Easily


- Softwood sugar syrup is highly fermentable
 - > Ethanol titer can be 11.0% (wt/v) in 48 hrs
 - > Optimization may increase ethanol titer further
 - > Syrup titer can be adjusted to optimize energy costs

CLE Solvent Liquefaction (SL) Process

Main Process Steps

- Biomass Feed System (raise biomass pressure & temperature for reaction)
- Convert biomass in the presence of organic solvent & partially remove oxygen
- Hydroprocess liquefied-biomass to remove remaining oxygen in refinery

CLE Solvent Liquefaction Process

Key process advantages:

- Very high yields (>100 gal of finished HC products/BDT)
 - 70% carbon conversion to the organic phase
 - Low carbon loss (<3%) to the aqueous phase
 - Low char yield (~5 wt%)
- > Favorable biocrude properties
 - Lower oxygen content (~20 wt%)
 - Very low water content
- Low complexity process
 - Moderate pressure operation, no catalyst
 - A practical, effective and low-cost solvent system
 - Processes a wide variety of whole biomass
- ➤ Greater than 60% GHG reduction ⊃ renewable cellulosic fuel

Summary

- CLE is selectively offering feedstock supply and product off-take for cellulosic biofuels producers in North America ("wrap" agreements)
- CLE's technologies are advantageous for difficult to hydrolyze feedstocks, such as softwood residuals which are available today at commercial scale
- The underlying components of CLE's Sugar technology are proven, scalable, and cost effective
- Solvent Liquefaction is a high-yield process and is undergoing additional development
- CLE is open to technology collaboration as well as "wrap" agreements

Catchlight Energy is uniquely positioned for commercial success

"The power of Human Energy to find newer, cleaner ways to power the world"

"Releasing the potential in trees to solve important problems for people and the planet"