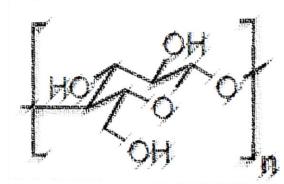


Cellulosic Materials at Alberta Innovates-Technology Futures

Robert Jost

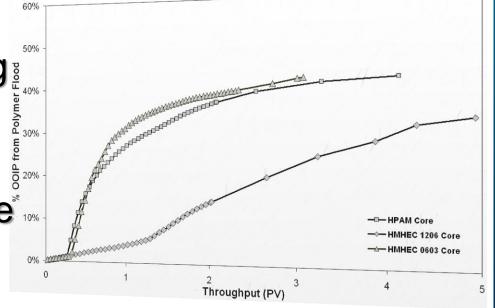
robert.jost@albertainnovates.ca

October 10th, 2012


Seventh Annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy

Areas of Interest

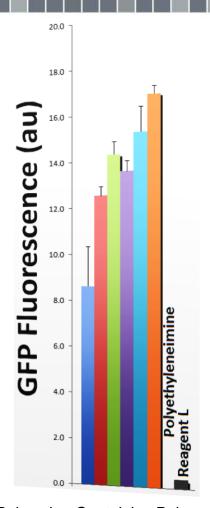
- Focus on polysaccharide technologies
 - Extraction of wood or agricultural biomass
 - Polysaccharide modification
 - Properties
 - physical
 - mechanical
 - chemical
- Application development
 - Water soluble cellulose polymers for oil recovery
 - Modified polysaccharides for biomedical
 - Suspensions of nanocrystalline cellulose (NCC)



Enhanced Oil Recovery

Coreflood experiments show oil recovery comparable to existing commercial polymers

Unique benefit: excellent salt tolerance



Bai, Jiang; Boluk, Yaman M.; Hawkins, Blaine F.; Jost, Robert; Wassmuth, Fred; Zhao, Liyan. *Waterflooding Method for Secondary Hydrocarbon Recovery.* Canadian Patent #2,684,230, International Application #WO 2011/050445 A1.

Transfection and Gene Therapy

- Better transfection efficiencies than commercial reagents
- Unique benefit: low toxicity
- Works on both plant and mammalian cells

Nanocrystalline Cellulose (NCC)

- A highly crystalline particle of cellulose derived from chemical wood pulp
- Prepared by using strong acid to hydrolyze amorphous regions of the cellulose

Concentrated NCC suspension in water

Dried NCC powder

Types of Nanocellulose

Nanocellulose

Micro/nanofibrillated cellulose Bacterial cellulose

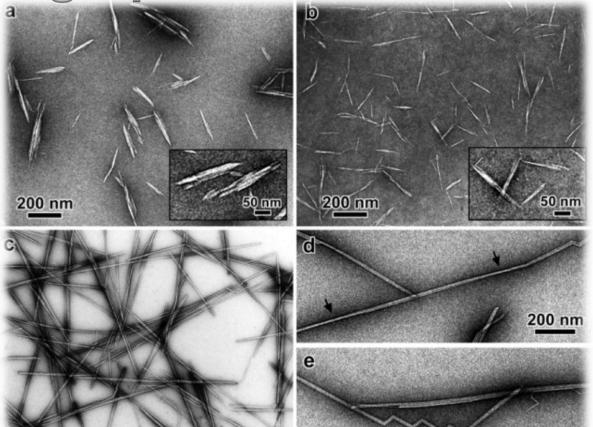
Cellulose nanofibrils
Nanosized/Nanoscale fibers

Larger aspect ratios

Nanocrystalline cellulose (NCC)

Cellulose nanocrystals (CNC)
Cellulose microcrystals
Cellulose whiskers Cellulose
crystallites Nanosized cellulose
Highly crystalline

Genesis of NCC



- Sulfite pulp treated with 2.5 N (11%) sulfuric acid
- Particle dimensions 46 X 7.3 nm

Transmission Electron Micrographs of Various NCCs

Cotton

Tunicin

Avicel

(MCC)

Tunicin

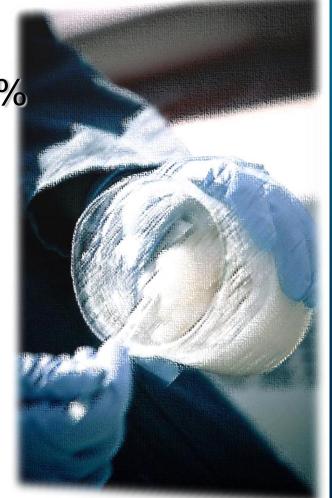
200 nm

Tunicin

Elazzouzi-Hafraoui, S.; Nishiyama, Y.; Putaux, J.-L.; Heux, L.; Dubreuil, F.; Rochas, C. *Biomacromolecules* **2008**, 9, 57–65.

500 nm

Typical NCC Preparation Methods


■ Temp: 45-70°C

Sulfuric acid concentration: 64%

Cellulose concentration: 10%

■ Time: 30-60 minutes

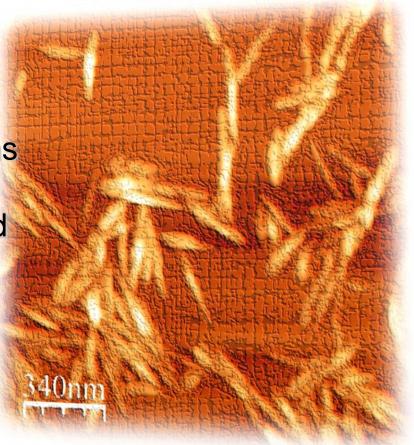
 Purification: centrifugation, filtration/dialysis, and drying

NCC Unique Properties

Size: 10 nm X 200 nm rods

Crystallinity: >80%

Can form stable dispersions from dry state

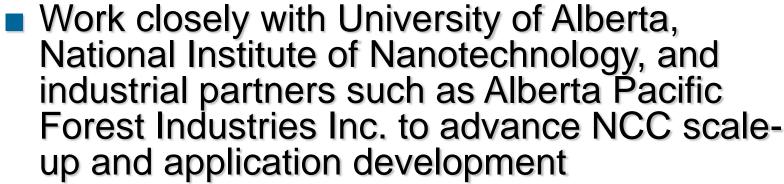

Liquid crystalline suspensions in water

 Suspensions can be oriented with an electric or magnetic field

High strength, roughly 1/10 that of carbon nanotubes

Biodegradable

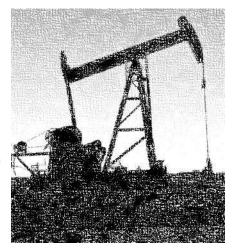
NCC Pilot Plants

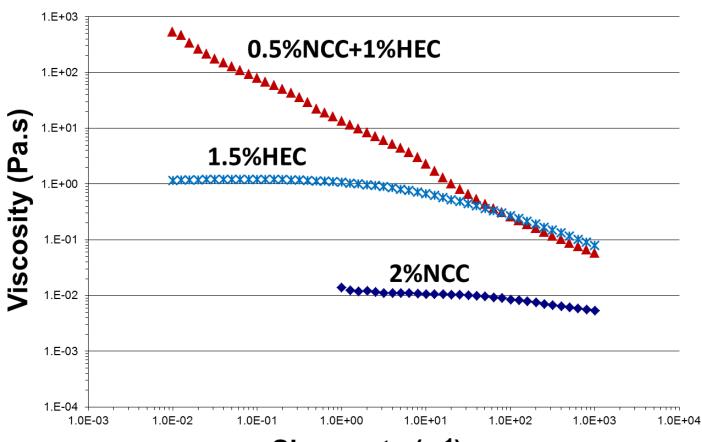

AITF NCC Project

- Three year, \$5.5 million project funded by federal and provincial governments
- Objectives:
 - Build a pilot plant capable of producing up to 100 kg NCC per week
 - Gain NCC scale-up production knowledge
 - Identify applications with sufficient volumes to justify a commercial facility
 - Construct a commercial NCC facility in Alberta

AITF Current Focus

- Nanocrystalline cellulose pilot facility
 - design
 - construction
 - equipment installation
 - commissioning

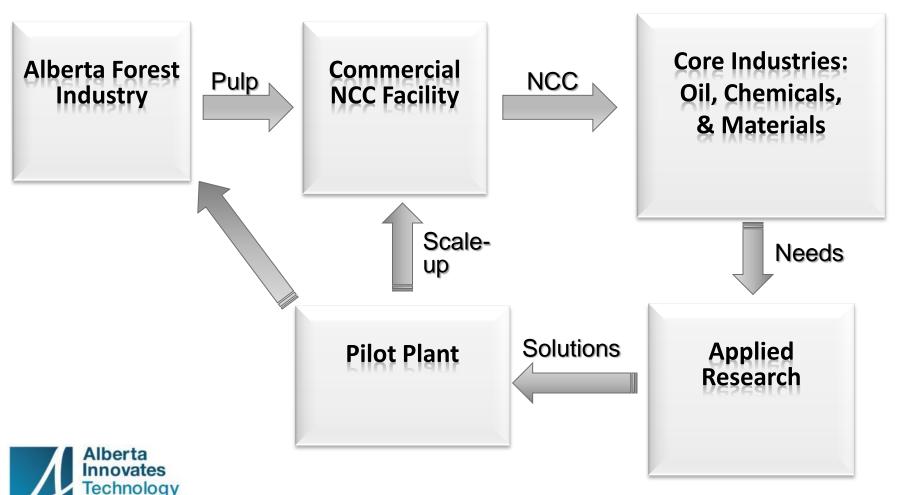



AITF NCC Application Focus

- Green chemical for energy sector
 - stimulation chemicals
 - enhanced oil recovery chemicals
 - drilling fluids
- Use of NCC-water suspensions
 - rheology control
 - address NCC limitations

AITF NCC Co-thickening Technology

Shear rate (s⁻¹)


Boluk, Yaman; Zhao, Liyan. Aircraft Anti-Icing Fluids Formulated with Nanocrystalline Cellulose US Patent# 8,105,430.

AITF's Value Proposition

- Feedstock production and processing expertise
- Utility experience with viscosity control
- Western Canadian industry focused
- Goals:
 - forest industry
 - increase competitiveness
 - demonstration/commercial NCC facility
 - energy industry
 - increase extraction efficiency
 - decrease environmental effects

Conclusions and Outlook

