

Chemicals and Low Cost Sugar from Lignocellulosic Materials

Ali Manesh, Susanta Mohapatra, Reza Hemyeri and Mahdieh Iranmanesh

Company Profile

American Science and Technology (AST), founded in 2003, provides common sense scientific, technological, and manufacturing solutions to its potential customers.

AST is a full service scientific and engineering company specialized in research development, deployment, and commercialization of Advanced Technologies and Products

➢Our major strength is our working relations with various domestic universities and research institutions,

➢AST's headquarter is in Chicago IL, manufacturing facilities are located in Wausau WI, and R&D labs in Charleston WV, and Brookings SD.

Our Biomass Conversion Processes

Process Flow Diagram, Organosolv Based Cellulosic Bio-Fuel

Typical GC results shows some of our Core Products

Typical Zero Leftover policy

AST's Pilot bio-Refinery uses Patented Process For Biomass Conversion

Our Pilot Equipment include following:

Wood Chip Digester

Fermenter

Fast pyrolysis

Product Separation systems and Various recovery systems

AST's complete Integrated Bio Refinery Pilot Plant

Our Core Products

Table 4: Annual operating costs f	or producing 119.1 million	kg/year of ethanol
20	62.6 million lbs	million gallons
Raw Materials	US\$/year	
Corn	\$31,024,000.00	
Denaturant	\$1,038,000.00	
Enzymes	\$2,016,000.00	
Yeast	\$477,000.00	
Other	\$496,000.00	
Utilities		
Electricity	\$1,063,000.00	
Steam	\$5,054,000.00	
Natural gas	\$3,222,000.00	
Cooling water	\$922,000.00	
Labor & Supplies		
Plant operations	\$1,037,000.00	
Maintenance	\$1,315,000.00	
Insurance & Admin	\$722,000.00	
Depreciation	\$4,664,000.00	
Subtotal	\$53,050,000.00	
Coproduct credit	-\$11,742,000.00	
Net annua production cost	\$41,308,000.00	

Source: Jason R. Kwiatkowski *, Andrew J. McAloon, Frank Taylor, David B. Johnston

Table 4: Annual operating costs fo	r producing 119.1 million l	kg/year of ethanol	
262.6 million lbs million gallons			
Raw Materials	US\$/year	% of cost	US\$/lb
Corn	\$31,024,000.00	58.48%	\$0.1181
Denaturant	\$1,038,000.00	1.96%	\$0.0040
Enzymes	\$2,016,000.00	3.80%	\$0.0077
Yeast	\$477,000.00	0.90%	\$0.0018
Other	\$496,000.00	0.93%	\$0.0019
Utilities			
Electricity	\$1,063,000.00	2.00%	\$0.0040
Steam	\$5,054,000.00	9.53%	\$0.0192
Natural gas	\$3,222,000.00	6.07%	\$0.0123
Cooling water	\$922,000.00	1.74%	\$0.0035
Labor & Supplies			
Plant operations	\$1,037,000.00	1.95%	\$0.0039
Maintenance	\$1,315,000.00	2.48%	\$0.0050
Insurance & Admin	\$722,000.00	1.36%	\$0.0027
Depreciation	\$4,664,000.00	8.79%	\$0.0178
Subtotal	\$53,050,000.00		\$0.2020
Coproduct credit	-\$11,742,000.00		-\$0.0447
Net annua production cost	\$41,308,000.00		\$0.1573

A Foundation for Future Energy

Corn verses cellulosic biomass			
Raw Materials	Fiber US \$/lb	Corn US\$/lb	
Corn		\$0.1181	
Denaturant		\$0.0040	
Enzymes		\$0.0077	
Yeast		\$0.0018	
Other		\$0.0019	
Utilities			
Electricity		\$0.0040	
Steam		\$0.0192	
Natural gas		\$0.0123	
Cooling water		\$0.0035	
Labor & Supplies			
Plant operations		\$0.0039	
Maintenance		\$0.0050	
Insurance & Admin		\$0.0027	
Depreciation		\$0.0178	
Subtotal		\$0.2020	
Coproduct credit		-\$0.0447	
Net annua production cost		\$0.1573	

Raw Materials	Fiber US \$/lb	Corn US\$/lb
Fiber / Corn	\$0.2000	\$0.1181
Denaturant	\$0.0040	\$0.0040
Enzymes	\$0.0500	\$0.0077
Yeast	\$0.0018	\$0.0018
Other	\$0.0019	\$0.0019
Utilities		
Electricity	\$0.0040	\$0.0040
Steam	\$0.0192	\$0.0192
Natural gas	\$0.0123	\$0.0123
Cooling water	\$0.0035	\$0.0035
Labor & Supplies		
Plant operations	\$0.0039	\$0.0039
Maintenance	\$0.0050	\$0.0050
Insurance & Admin	\$0.0027	\$0.0027
Depreciation	\$0.0178	\$0.0178
Subtotal	\$0.3262	\$0.2020
Coproduct credit		-\$0.0447
Net annua production cost		\$0.1573

Input / Output Prices	Usage	Market Price		
Input	Kg/DT W	\$/Ton	Costs	Balance
Dry Wood Chips	1000	\$100.00	\$100.00	
Water (recycled)				
Acid	17.5	\$100.00	\$1.75	
Solvent (recycled)				
Total Input	•			\$101.75
operational costs (\$0.07/Lb)				\$140.00
Total Costs				\$241.75
Output excluding recycled materials				
т	ypical Fiber Proc	duction		
U	sing Organosolv	Process		
	1			
typical Lignin extracted 20%	200	\$100.00	\$20.00	
Typical fibeer extracted 40%	400	\$555.00	\$222.00	
Tatal Que et al a se				ć242.00
Iotal Organic Layer				\$242.00
Net Profit per Ton of dry wood				\$0.25

				1
Input / Output Prices	Usage	Market Price		
Input	Kg/DT W	\$/Ton	Costs	Balance
Dry Wood Chips	1000	\$100.00	\$100.00	
Water (recycled)				
Acid	17.5	\$100.00	\$1.75	
Solvent (recycled)				
Total Input	•			\$101.75
operational costs (\$0.07/Lb)				\$140.00
Total Costs				\$241.75
Output excluding recycled materials				
Typical process generate solvents	/ other chemica	ls and loses solve	ent with fiber a	nd lignin
solvent is recycled, extra	chemicals, fiber,	and lignin are ex	tracted for sale	2
Net gain on organic materi	als total input so	lvent minus tota	l output solver	nt
Typically 15% gain on organic chemicals	150			
typical Lignin extracted 20%	200	\$200.00	\$40.00	
Typical fibeer extracted 40%	400	\$200.00	\$80.00	
Pyoil 50% of left over	125			
Total Organic Layer	•			
Net Profit per Ton of dry wood				

F	1	i		
Input / Output Prices	Usage	Market Price		
Input	Kg/DT W	\$/Ton	Costs	Balance
Dry Wood Chips	1000	\$100.00	\$100.00	
Water (recycled)				
Acid	17.5	\$100.00	\$1.75	
Solvent (recycled)				
Total Input				\$101.75
operational costs (\$0.07/Lb)				\$140.00
Total Costs				\$241.75
Output excluding recycled materials				
Typical process generate solvents	/ other chemica	ls and loses solve	ent with fiber a	nd lignin
solvent is recycled, extra	chemicals, fiber,	and lignin are ex	tracted for sale	
Net gain on organic materi	als total input so	lvent minus tota	l output solver	nt
Typically 15% gain on organic chemicals	150	\$800.00	\$120.00	
typical Lignin extracted 20%	200	\$200.00	\$40.00	
Typical fibeer extracted 40%	400	\$200.00	\$80.00	
Pyoil 60% of left overs	125	\$200.00	\$25.00	
Total Organic Layer	•			\$265.00
Net Profit per Ton of dry wood				\$23.25

Conclusion

With Zero Waste fractionation of lignocellulosic materials can become profitable.

With proper arrangement, fractionation process can produces high value products such as:

- •Butyl acetate:
- •Furfural:
- •Levunilic acid:
- Levunilic acid butyl ester
- •Fiber
- •Water insoluble Lignin
- •vanillin

With Subsidies fiber from lignocellulosic materials can compete with corn and cane

Without subsidies, the C6 sugar is too expensive for bio fuel and should be converted to other higher value chemicals such as:

isoprene,lactic acid,

For more information, visit us at

www.amsnt.com or send us an email to am@amsnt.com