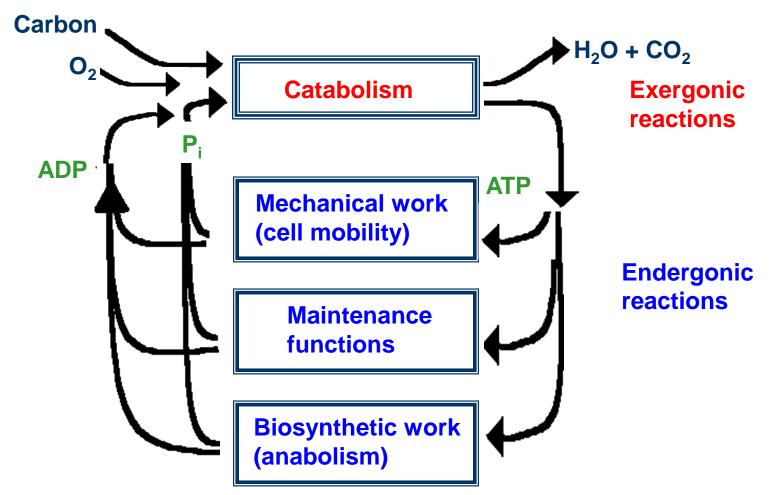


Yeast-derived Surfactant Synergists for Cleaning, Bioremediation and Agriculture

Presenter: Carl Podella

Co-Presenter: Michael Goldfeld

Advanced BioCatalytics


Pioneered the Use of Low Molecular Weight Proteins that:

- Uncouple biochemical processes
 in bacteria
- Bind with surfactants to alter the functionality of most surfactants

"UNCOUPLING FACTOR"

- Stimulates uncoupling of oxidative phosphorylation in biochemical processes
- Enhances wastewater treatment
- Accelerates Bioremediation of hydrocarbon-contaminated soil
- Controls biofilm

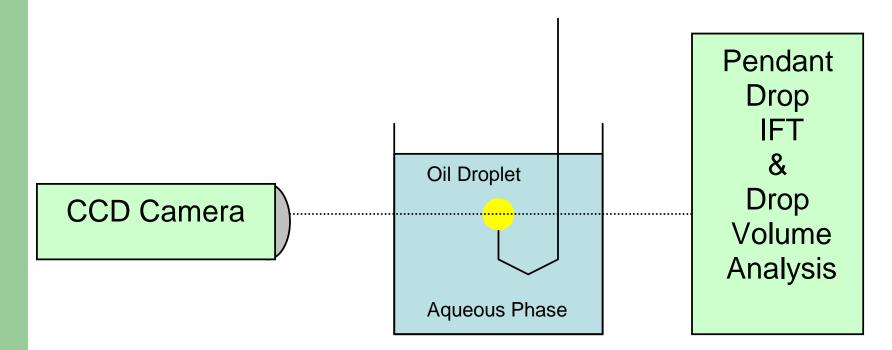
THE ROLE OF THE ATP-ADP CYCLE IN CELL METABOLISM

MASS BALANCE RESPIRATION STUDY

Biodegradation of Tryptic Soy Broth in Bioreactor at 4 Hours 400 300 bpm 200 100 0 **Carbon-based Carbon respired Biomass carbon as** contaminant reduction sludge as CO Control Accell®

	Control		% Difference			
Carbon -based contaminant reduction	175.3	328.6	87.5			
Carbon respired as CO ₂	49.5	263.8	432.9			
Biomass carbon as sludge	142.8	76.8	-46.2			

TOTAL PLATE COUNTS - 4 HOURS	6.9 X 10 ⁷	6.0 X 10 ⁶
------------------------------	-----------------------	-----------------------


PROTEIN - SURFACTANT SYNERGIST (P-SS)

- Low molecular weight stress proteins
- 6,000 17,000 Daltons
- Derived from Saccharomyces cerevisiae
- Highly stable over wide range of conditions

EFFECTS OF P-SS ON SURFACTANTS

- Reduces CMC values yielding greater cleaning
 power with lower surfactant levels
- Reduces surface and interfacial tension of surfactants
- Increases detergency by converting oil and grease to surfactant-like materials
- Allows creation of higher efficacy cleaners without harsh chemicals or solvents
- Has applications across a broad spectrum of surfactant types and end-use applications

ACCELL® EFFECT ON CMC, GREASE AND GREASE CONVERSION

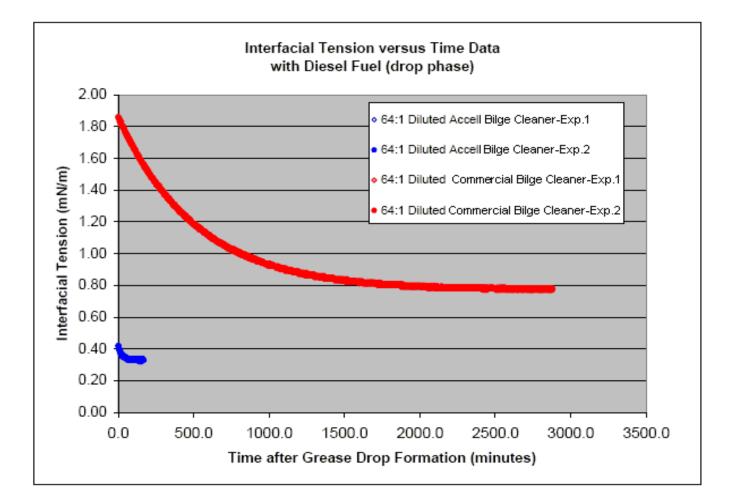
Solution	CMC Pre- Grease Exposure	CMC Post- Grease Exposure	Grease Lost to Aqueous Phase	Grease Converted to Detergents	Percent Increase in Cleaning Power
10 ppm Surfactant (no proteins) in Distilled Water	442	442	1.5 %	0 %	N/A
10 ppm Accell [®] in Distilled Water	75	35	11.2 %	4.0 %	500 %

CMC: Critical Micelle Concentration (point at which detergency reached) N/A: Not Applicable PPM: Parts per Million (mg/l)

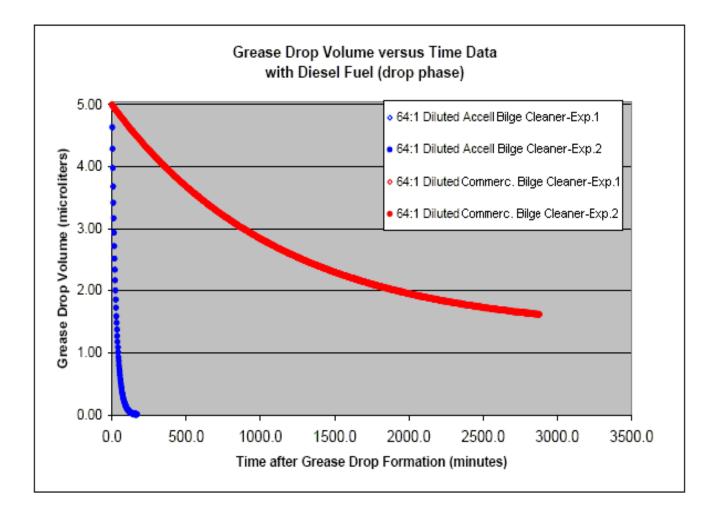
ACCELL® EFFECT ON CMC, GREASE AND GREASE CONVERSION

Solution	CMC Pre- Grease Exposure	CMC Post- Grease Exposure	Grease Lost to Aqueous Phase	Grease Converted to Detergents	Percent Increase in Cleaning Power
Microbial Sludge	N/A	67.8	4.2 %	0 %	N/A
10 ppm Accell [®] in Microbial Sludge	68.0	4.0	28.6 %	6.4 %	740 %
10 ppm 30K MWCO	70	9.0	24.4 %	6.1 %	710 %

CMC: Critical Micelle Concentration (point at which detergency reached) N/A: Not Applicable PPM: Parts per Million (mg/l)


SURFACTANTS WITH & WITHOUT P-SS

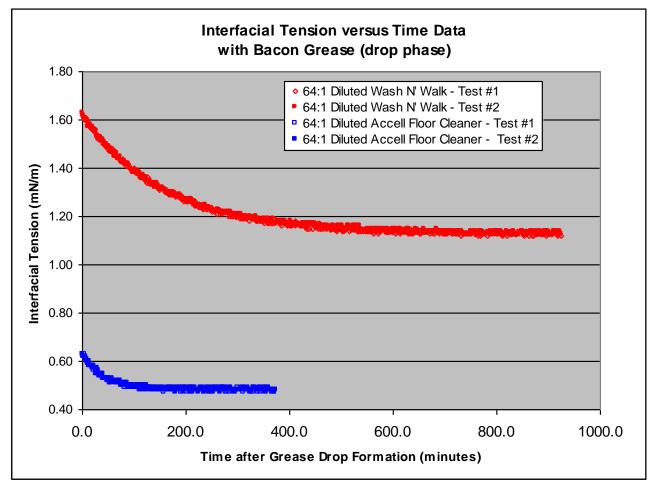
	CMC Based On	IFT at CMC
CONDITION	Surfactant Concentration	With Canola Oil
	(ppm)	(mN/m)
Sodium Lauryl Ether Sulfate (SLES)	1240	1.76
Sodium Lauryl Ether Sulfate + P-SS	333	1.46
Linear Alkyl benzene Sodium Sulfate (LAS)	684	0.52
Linear Alkyl benzene Sodium Sulfate + P-SS	202	0.42
C9-11 Alcohol Ethoxylate 6EO	162	7.03
C9-11 Alcohol Ethoxylate 6EO + P-SS	73	6.31
C14-15 Branched Alcohol Propoxylate (4PO) Sulfate	105	0.93
C14-15 Branched Alcohol Propoxylate (4PO) Sulfate + P-SS	34	0.87



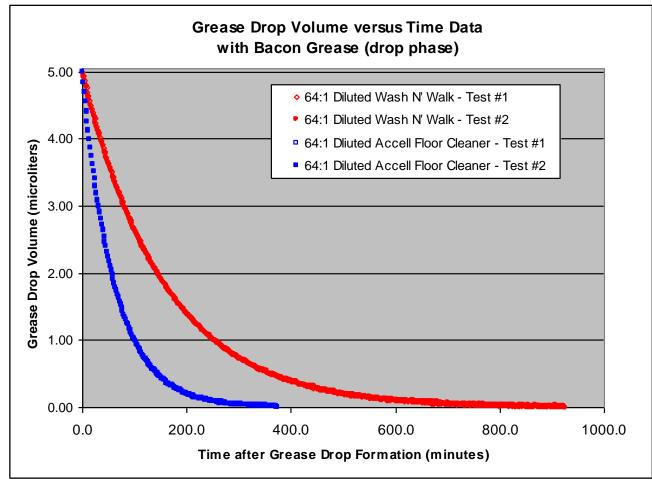
INTERFACIAL TENSIONS WITH DIESEL FUEL					
Sample 2% Dilution	Test # 1 Ring Method IFT at 2% Conc. (mN/m)	Test # 2 Ring Method IFT at 2% Conc. (mN/m)	Test # 3 Ring Method IFT at 2% Conc. (mN/m)	Average Ring Method IFT at 2% Conc. (mN/m)	
6 ABC 8-1	0.59	0.59	0.60	0.59	
6 ABC 8-2	0.59	0.57	0.57	0.58	
6 ABC 5-2	0.51	0.52	0.53	0.52	
6 ABC 8-3	0.50	0.49	0.49	0.49	
6 ABC 8-4	0.47	0.45	0.45	0.46	
6 ABC 8-5	0.41	0.43	0.43	0.42	
6 ABC 8-6	0.42	0.41	0.39	0.41	
6 ABC 8-7	0.36	0.36	0.37	0.36	


BILGE CLEANER FOR PLEASURE CRAFTS

BILGE CLEANER FOR PLEASURE CRAFTS



FLOOR CLEANER STUDY


Accell[®] Floor Cleaner vs. Ecolab Wash 'N Walk

18

FLOOR CLEANER STUDY

Accell[®] Floor Cleaner vs. Ecolab Wash 'N Walk

ACCELL® FLOOR CLEANER VS. ECOLAB WASH 'N WALK

Both Products in Dilute WAS ►	64:1 Walk N' Wash (Bacon Grease)	64:1 Accell Floor Cleaner (Bacon Grease)
► PRE GREASE EXPOSURE SOLUTION PROPERTIES		
Surface tension prior to grease drop exposure (mN/m)	19.71	26.52
► PROPERTIES AND EFFECTS DURING GREASE EXPOSURE		
Initial interfacial tension upon exposure to grease (mN/m)	1.63	0.63
Equilibrium interfacial tension with grease (mN/m)	1.13	0.48
Time frame for interfacial tension equilibration (minutes)	560	112
Grease drop volume after 2880 minutes = 48 hours (ul)	0.00 after 920 min	0.00 after 370 min
Time frame for grease drop volume equilibration (minutes)	920	370
► POST GREASE EXPOSURE SOLUTION PROPERTIES		
Surface tension of 5.0 ml retain after grease exposure (mN/m)	19.69	26.19
CMC after grease drop exposure (ppm)	60	21
► CALCULATED PROPERTIES BASED ON THE DATA ABOVE		
Concentration of the aqueous retain in terms of converted grease (ppm)	1000	1000
Percentage of the 5.0 ul grease converted to "surfactant-like" materials (%)	2.3	13.2

ACCELL[®] FLOOR CLEANER VS. ECOLAB WASH 'N WALK

SOME OTHER IMPLICATIONS

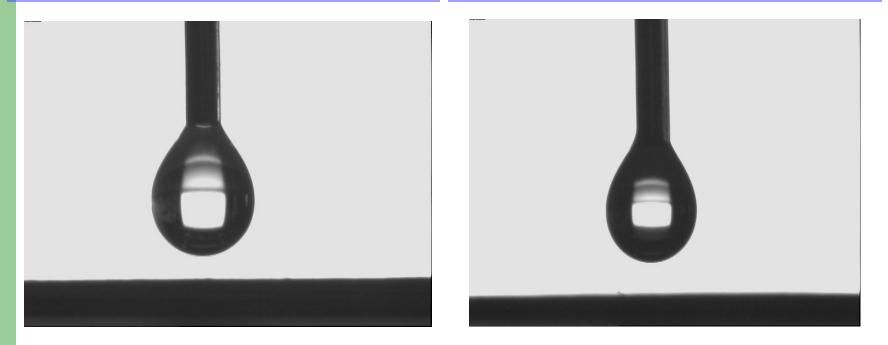
AGRICULTURE: ENHANCING WATER & PESTICIDE UPTAKE BY ROOTS & LEAVES

Currently, ca. 0.1% herbicide applied reach the targeted structure in plant.

Adjuvants – mostly surfactants – increase uptake/efficiency of watering and pesticide applications, and reduce environmental impact.

EFFECT OF P-SS ON CMC VALUES

	CMC, ppm		
Surfactant	No P-SS	With P-SS	
Lauramine Oxide	99.78	13.03	
Na Lauryl Ether Sulfate	642.6	115.2	
1:2 LO - SLES	146.1	7.72	

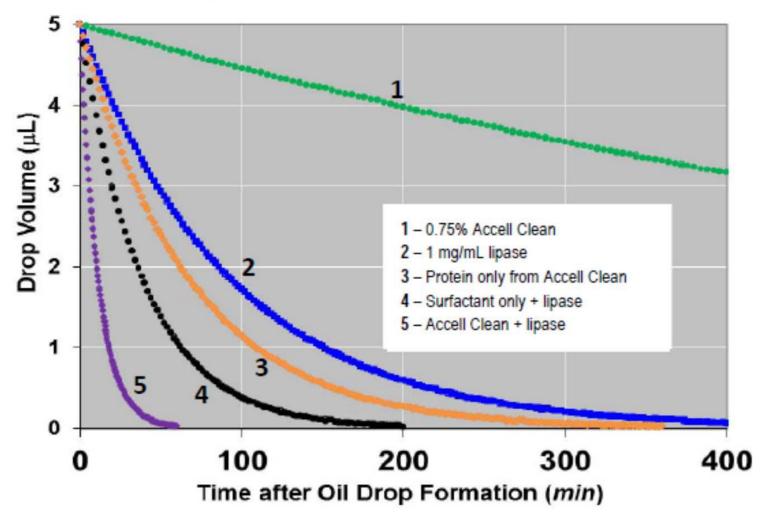

P-SS/SURFACTANT ADJUVANTS IN AGRICULTURE APLICATIONS

80:1 Dilution in Water of	Leaf	Average Approximate Time to Complete Droplet Penetration (seconds)	Equilibrium Non-Penetrated Drop Volume (microliters)	Equilibrium Contact Angle (degrees)
Ethox. Tallow Amine	Cabbage	600+ (∞)	0.35	28.6
Ethox. Tallow Amine + P-SS	Cabbage	233	0.00	0.0
Lauramine Oxide	Cabbage	600+ (∞)	0.21	18.8
Lauramine Oxide + P-SS	Cabbage	194	0.00	0.0
Na Lauryl Ether Sulfate	Cabbage	600+ (∞)	0.18	18.1
Na Lauryl Ether Sulfate + P-SS	Cabbage	185	0.00	0.0
1:2 LO - SLES	Cabbage	600+ (∞)	0.09	12.5
1:2 LO – SLES + P-SS	Cabbage	159	0.00	0.0

COMMERCIAL DETERGENT VS. ABC PRODUCT

Comparison of Wetting & Uptake for Two Aqueous Solutions on Tomato & Cabbage Leaves

0.25% NPE droplet on Cabbage Leaf 0.25% ABC droplet on Cabbage Leaf



SURFACTANT AND ENZYME SYNERGIST

Statistics from 5.0 Microliter Prime Burning Peacock Oil Consumption and IFT Experiments	1.5% Accell Clean	1 mg/ml Lipase	0.75% Accell Clean	0.75% Accell Clean and 1 mg/ml Lipase
Initial IFT (mN/m)	1.54	16.62	2.03	1.98
Time of 50% Digestion (minutes)	348	66	605	7.9
IFT at 50% Digestion (mN/m)	1.34	10.41	1.77	1.24
Time of 99% Digestion (minutes)	2196	418	3816	50
IFT at 99% Digestion (mN/m)	1.13	4.52	1.49	0.62

ENZYME SYNERGIST

OIL DROP DIGESTION: VOLUME VS. TIME

CONCLUSIONS:

- ABC's Surfactant Synergist Technology Enhances Surfactant Performance through Reduced Interfacial and Surface Tension and Critical Micelle Concentration Values
- Surfactant Synergist Facilitates the Formulation of Highly Efficacious Products without the need for Caustic Materials or Solvents such as Glycol Ethers or Alcohols
- Unlike Enzymes, the Surfactant Synergist Proteins are Highly Stable over a wide range of Temperatures and pH Values, providing Excellent Shelf Life
- ABC's Surfactant Synergist Provides Greater Efficiency at Lower Concentrations
- The Surfactant Synergist Technology is Compatible with the "Green Movement" because it is Fermented from Renewable Materials