Algae Production: Next Steps

Improving lives through science and technology

Shay L. Simpson Bioenergy Associate Program Director Texas A&M AgriLife Research

THE TEXAS A&M UNIVERSITY SYSTEM

11 Universities 7 State Agencies Health Sciences Center

Texas A&M Engineering

College of Agriculture and Life Sciences Texas A&M University

Texas A&M AgriLIFE

Texas A&M AgriLIFE Research

Texas A&M AgriLIFE Extension

Texas A&M Forest Service

Texas A&M Veterinary Medical Diagnostic Laboratory Dwight Look College of Engineering Texas A&M University

Texas A&M Engineering Experiment Station

Texas A&M Engineering Extension Service

Texas A&M Transportation Institute

Bioenergy Program Scope

- Over 40 projects with a portfolio value of over \$40 million
- Major programs with:
 - NAABB (Algae)
 - Ceres (Sorghum)
 - Chevron (Oil seeds and energy cane)
 - BP (Energy crops)
 - State of Texas (ETF and appropriations)
 - U.S. Govt. (DOE, DOD, USDA, NSF)
- \$30 million in new proposals underway

Human Energy-

Algae Program

- Texas Governor's Emerging Technology Fund 2007/2012
- U.S. Air Force Strategic Fuels Supply 2007/2011
- General Atomics' DARPA Algae for JP-8 2009/2011
- NAABB DOE Algae Consortium 2010/2013
- DOE ASAP, NSF, DOD

Pecos Station Algae Research Facility

Three large-scale outdoor pond test beds Support laboratories and greenhouse Harvest barn

Coastal Algae Production Facility

Twelve small-scale open pond raceways Support labs Natural-gas fired PP and land owner collaborators

Founding Member

- Biology transformation & transcriptome profiles
- Cultivation real-time, in-situ sensor development ; Corpus and Pecos production
- Harvest/Extraction chemical & electrolytic harvest techniques; solvent-assisted wet extraction
- Conversion fast pyrolysis
- Co-products animal feeds & soil amendments; high value products

Sustainability – site-specific & world market analyses

Criteria for Algae Commercialization

Parameter	Target Range
Biomass Productivity	40 - 80 MT/ac
Avg. Areal Growth	20 - 40 g/m²⋅d
Seasonal Species	4 - 8 species
Recycling Efficiency	90 - 98%
Oil Content	20 - 40%
CAPEX/ac	\$40,000 - \$80,000
Co-product Value	>\$300 MT

Advances in Production

- Modeling of 1000 ac·ft of water algae facility
- Reduction of CAPEX
 - ➤ Liner alternatives (35%)
 - Minimum mixing (pumps) to keep algae adequately suspended (15%)
 - Reduced debt payment in OPEX (40%+)
- Reduction of OPEX
 - Nutrient source alternatives (30%)
 - Minimum mixing energy (electrical demand) for suspension (10%)

Advances in Engineering

- Progress in research and securing intellectual property
- Separation Technologies
 - ➔ Electrolytic Coagulation and Flocculation
 - Output is 6-10% solids
 - Energy consumption is 0.034 kW·h/kg
 - Solvent-assisted Wet Extraction
 - Input at 6-10% solids
 - Output is oil and PEAR (post-extracted algae residue)
- Conversion Technologies (starch/oil independent)
 - Fast Pyrolysis and Gasification
 - Distributed system for intermediate process
 - Outputs are bio-oil, bio char, and synthesis gas

Co-product Advances

Ruminant (beef cattle) feed

- Competitive with cottonseed meal as protein supplement

Shrimp & Fish feed

- **Ϡ** \$6 B/yr industry to double in 10 yrs
- \$400-900/ton PEAR value as replacement to fish and/or soybean meals
- **7** 10% incorporation into aquafeeds

Poultry feed

Layer hens diet incorporation study

Conclusions

Algae production is farming

- Low-cost solutions will win
- Degree days, nutrients, water
- Learn from 1000's of years of agronomy
 - **7** Cultivation \rightarrow land preparation
 - **7** Planting \rightarrow seedstock
 - **7** Fertilization → nutrient/media development
 - Integrated pest management (IPM) plan → control contaminants
 - **7** Harvest \rightarrow unit operations for separation

Thank you and Gig'em!

Shay L. Simpson shay-simpson@tamu.edu

