Growing and Strengthening the Biobased Chemicals Industry

USDA BioPreferred™ Forum
April 1, 2010

Rina Singh, PhD
Director Policy
Industrial and Environmental Section

Some Industrial and Environmental Section

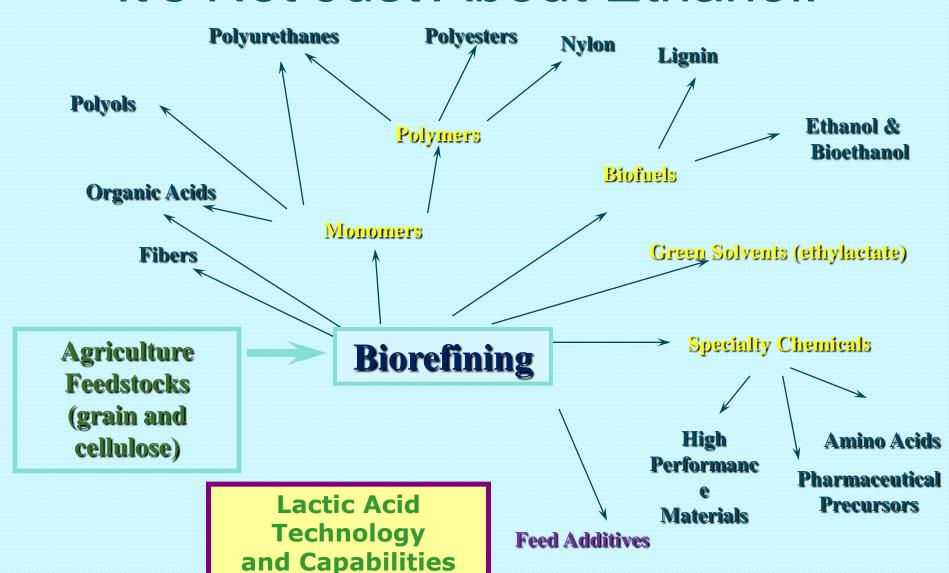
Members

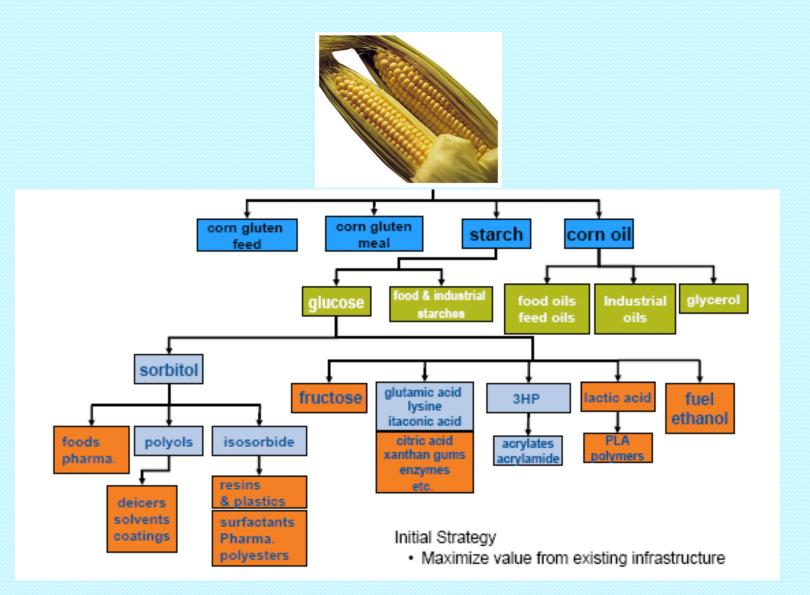
NatureWorks
Real. Right. Renewable

VERENIUM

gevo

ARBORGEN





Biorefining

It's Not Just About Ethanol!

Example of a Bio-refinery: Wet Mill

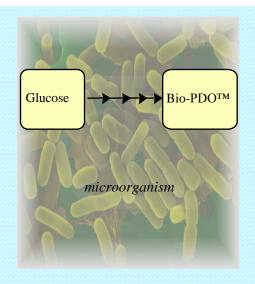
Examples of Biochemicals & Biopolymers

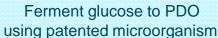
- Butanol
- Isobutanol
- Ethanol
- Acrylic Acid
- Propylene Glycol
- 1,3-Propanediol
- Glycolic Acid
- Acetic Acid
- Caprolactam
- Hydroxy Alkanoates
- Adipic Acid
- Isosorbide
- Acrylamide
- Fumaric Acid
- Isosorbide
- Succinic Acid

- 1,4-Butanediol
- Methyl Ethyl Ketone
- Isoprene
- Ethyl Acetate
- Algae Based Chemicals
- Itaconic Acid
- SAP
- Acetone
- PLA
- PHA
- PVC
- PET
- UPR

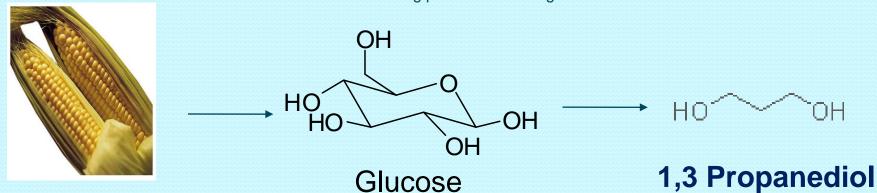
Bio-Derived Plastics - First Wave

Recent Advances In Renewable Chemicals DuPont, NatureWorks, Dow


	DuPont Bio-PDO (Serona®)	NatureWorks™ PLA	Dow/Crystalev JV
Plant Scale	45 kTA	140 kTA	350 kTA
Fermented Product	1,3-Propanediol	Lactic Acid	Ethanol
Key Processes	Fermentation, Condensation Polymerization	Fermentation, Oligomerization, Ring-Closing, & Ring-Opening Polymerization	Fermentation, Dehydration, Polymerization
Initial Product	PDO/TPA Copolymer	Polylactic acid	Ethylene, Polyethylene, Copolymers
Flexibility	Moderate	Low	High


Availability of New Renewable Raw Materials

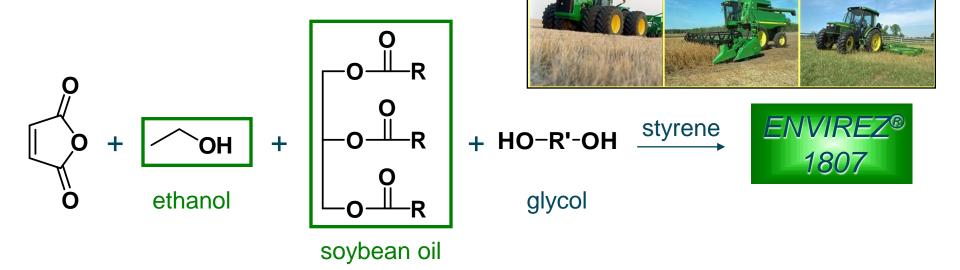
Example: Conversion of glucose to 1,3-propanediol (PDO)


Corn

Refine to 99.7% purity

Courtesy of DuPont Tate & Lyle BioProducts LLC

1Susterra is a trademark of DuPont Tate & Lyle BioProducts LLC



ENVIREZ® Resin Platform

- Ashland developed the first commercially available bio-based product in 2003
 - ENVIREZ 1807 Resin was first used in SMC applications.

This was originally developed by Ashland at the request of the United Soybean

Board and John Deere

- Ashland continues to invest in the research and development of green resins
 - Commercial products are now available for SMC/BMC, pultrusion, casting, infusion, and general laminating

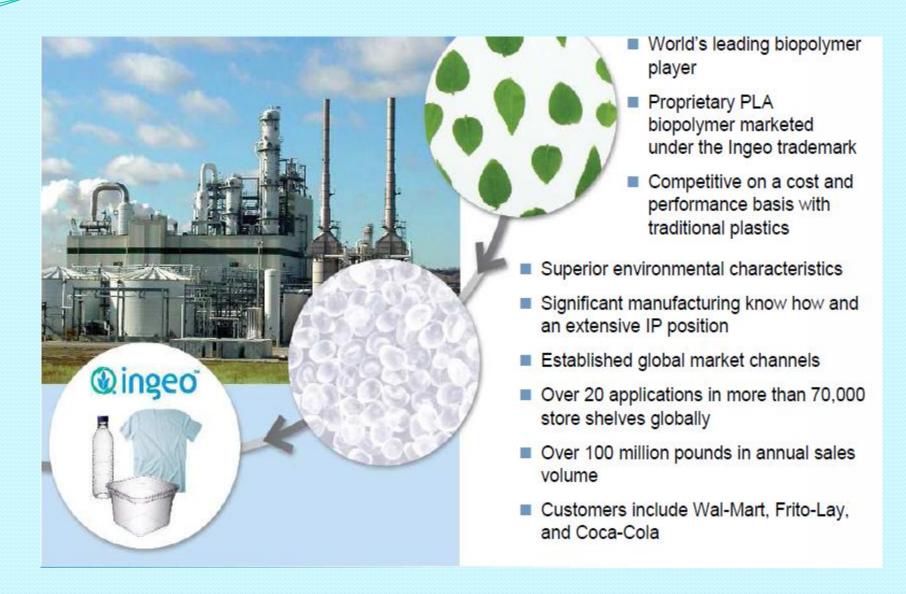
Solid Surface Counters **USDA BioPreferred Listing**

- Using ENVIREZ SS 70419 Resin
- Application listed on USDA BioPreferred procurement database
 - "Vendura solid surface material manufactured with bio-resin supplied by **Ashland Inc.**"

VENDURA

- **ENVIREZ SS 71301** Resin
- Won the 2009 ACMA Green Aces award

- Using ENVIREZ L86300 Series Resin
- **Public** announcement of full production -January 2010

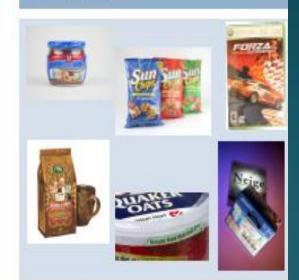

Boat Hulls & Decks

Polylactic Acid (PLA)

PLA Product Applications

Fresh food packaging

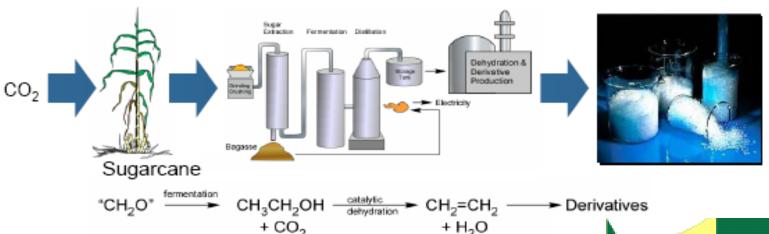
Beverages

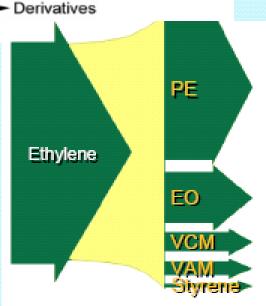

Food serviceware

Nonwovens/fibers

Films/cards

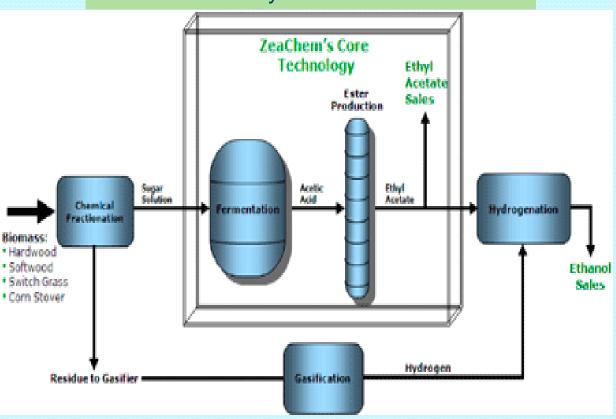
Durables





Dow Crystalev JV

Polyethylene from Cane - Brazil


- 350 kT of LLDPE (700 MM lbs)
- 120,000 hectares of cane
- Recyclable plastic (CO₂ fixation)
- Cheaper than many fossil sources
- Lower capital footprint
- Walled off from oil volatility

ZeaChem

Hybrid-biotech and thermochemical

Products - ethyl acetate and ethanol

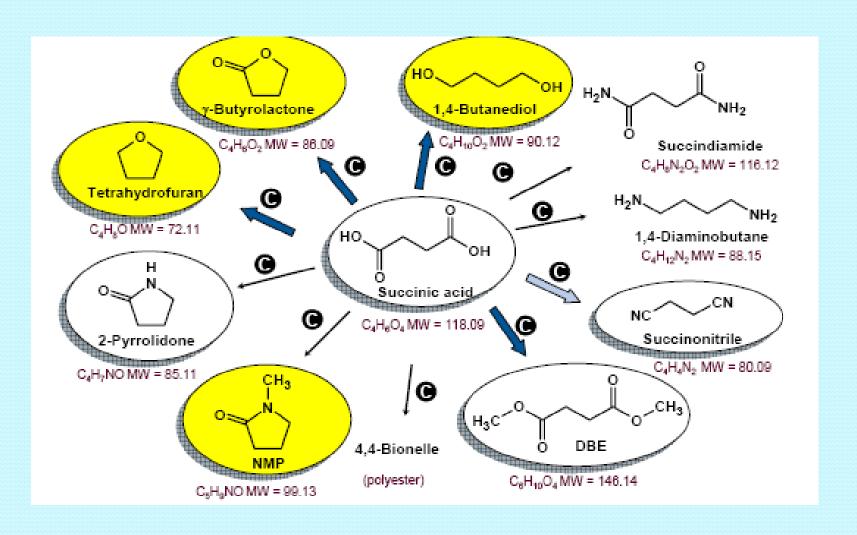
The sugar stream (both xylose $[C_5]$ and glucose $[C_6]$) is sent to fermentation where an acetogenic process is utilized to ferment the sugars to acetic acid without CO_2 as a by-product. In comparison, traditional yeast fermentation creates one molecule of CO_2 for every molecule of ethanol. Thus the carbon efficiency of the ZeaChem fermentation process is nearly 100% vs. 67% for yeast

Solvay Renewable PVC Production

From sugar and salt to make plastic

Solvay Indupa's Brazilian new plant (start in 2010)

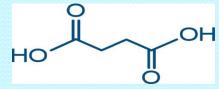
60 Kton/ year of Bio-Ethylene and 125 Kton/year of Renewable PVC

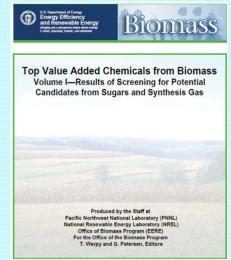

Reduction of 300 Kton/ year of CO₂ emissions

Second Wave Bioproducts Beyond Ethanol And Biodiesel

Bio Conversion— Second Wave Bioprocesses vs. Chemical Processes

Succinic Acid Platform

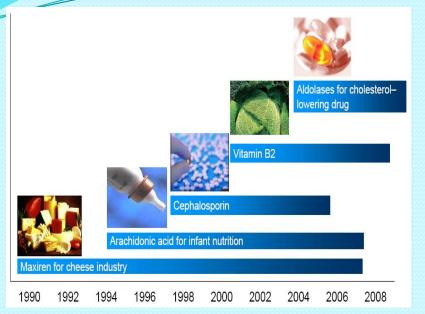


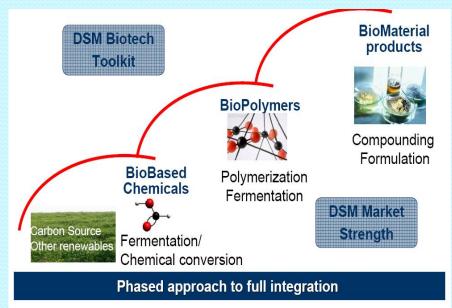


Production of Succinic Acid

Uses metabolic engineering and metabolic evolution to construct organisms that make high value, high purity, renewable chemicals such as succinic acid from sugar

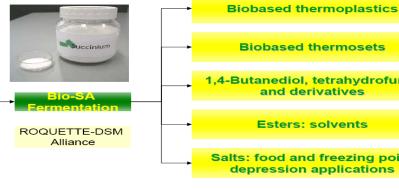
"Top Value Added Chemicals from Biomass" - U.S. DOE


Robust and Scalable Process for Succinic Acid


- Faster: reduce capital investment
- Cheaper: nutrients, energy, process chemicals
- Cleaner: fermentation and downstream separation/purification are integrated

"We are competitive at today's oil prices and down to less than \$45/barrel equivalent!"

DSM Track Record in White Biotechnology


Roquette the partner in bio-succinic acid

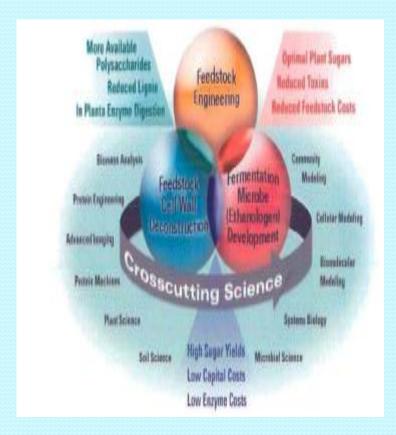
Producing succinic acid via biological routes has several advantages:

- Lower environmental impact
 - 1. No use of fossil fuels (crude oil)
 - 2. Bio-renewable feedstocks
 - 3. Absorbs instead of emits CO₂
 - 4. Cost proposition allows for high volume green chemicals and materials
- 2. New biobased & biodegradable applications feasible
 - 1. Production of 'green' plastics like PBS (for a.o. agricultural films)
 - Biobased fibers for clothing
 - 3. Bio-based resins (e.g. polymer of bio-succinic acid and isosorbide [biobased product made by Roquette])

Market approach via partnerships

Biobased thermosets

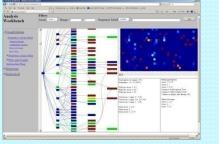
1,4-Butanediol, tetrahydrofuran and derivatives


Esters: solvents

Salts: food and freezing point depression applications

Value chain integration partners

Third Wave - Plant Expression


Synthetic Biology & Systems Biology Contributions to Biofuels, Renewable Chemicals, Specialty Chemicals, Bioproducts



Surfactants Platform Using Synthetic Biology

Software Robotics Biology Manufacturing Chemicals

Specialty Chemicals Surfactants

•\$24 billion market

•Annual global production 13 million metrics tonnes

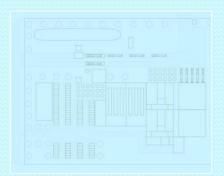
Foaming agents

Emulsifiers

Dispersants

Surfactant Manufacturing Today

- •32 billion kg CO₂ annually
- •Equal to burning 3.6 billion gallons of gasoline annually



 Palm and coconut plantation expansion threatens rainforest

Surfactant Manufacturing Tomorrow

Terpenes Provide Processing Advantages

- Historically, terpenes have been too expensive to produce through traditional manufacturing processes
 - ✓ Chemical synthesis
 - ✓ Extraction
- Allylix proprietary metabolic engineering fermentation platform offer significant advantages:
 - ✓ Step change in the cost of production
 - √ Sustainable
 - ✓ Stable supply
- Allylix technology opens the use of terpenes broadly across all market

Value In Multiple Industries

Industry

Example products

Flavor & Fragrances

Menthol

Insect Repellents

Nootkatone

& Crop Protection

Geraniol Citranella

Natural

Sweeteners

Steviaside

Rebaudioside

Biofuels

Terpene

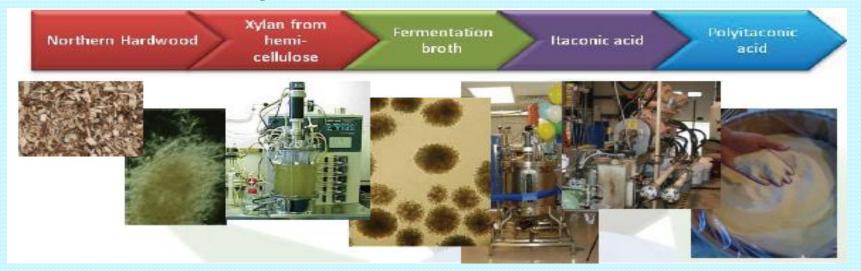
hydrocarbons

Pharmaceuticals

Taxol

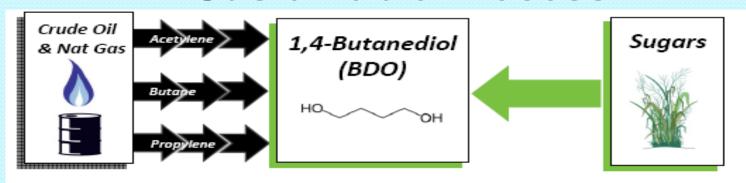
a history of breakthrough innovation

Biochemicals Commercialized from Genencor


- Lysine
- Threonine
- Tryptophan
- Indigo
- Biotin
- Ascorbic Acid
- PDO polymer DuPont Tate & Lyle
 - Sorona[™] carpets, cosmetics, etc.
 - 40% less energy, GHG reduced 20%
- BiosiopreneTM: strategic biobased alternative
 - Major potential to reduce tire & rubber industry dependence on oil, natural rubber
 - Broad applications in rubber, adhesives, fuel
 - LCAs to ensure process will be sustainable.

Concept Biolsoprene[™] Tire for the UN Climate Summit, Dec 2009, CPH

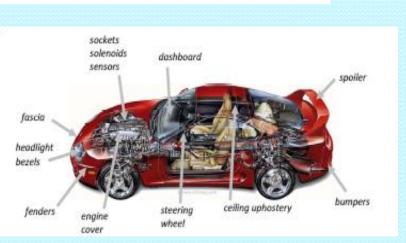
Biobased Polymers Derived from Itaconic Acid



Applications for Polyitaconic Acid

1,4-Butanediol Platform Sustainable Process

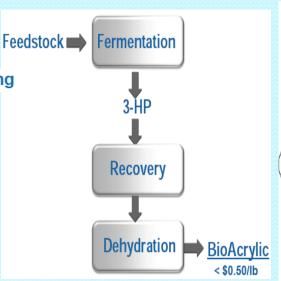
Genomatica's Process Overview

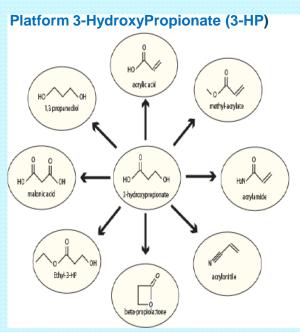

- Direct conversion to BDO
- 100% renewable BDO
- Cost-advantaged (even at \$50/bl oil)
- Over 50% lower fossil energy
- Reduced CO₂ and GHG emissions

BDO Today

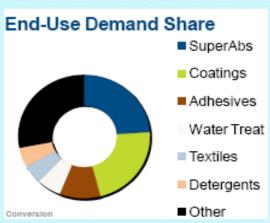
- 2.5B lbs/yr. (\$3B market)
- Key chemical intermediate
- Range of applications:
 - Polyesters (PBT)
 - Polyurethanes (TPU)
 - · Co-polyester ethers
 - · Co-polymers (spandex)

Current BDO Applications

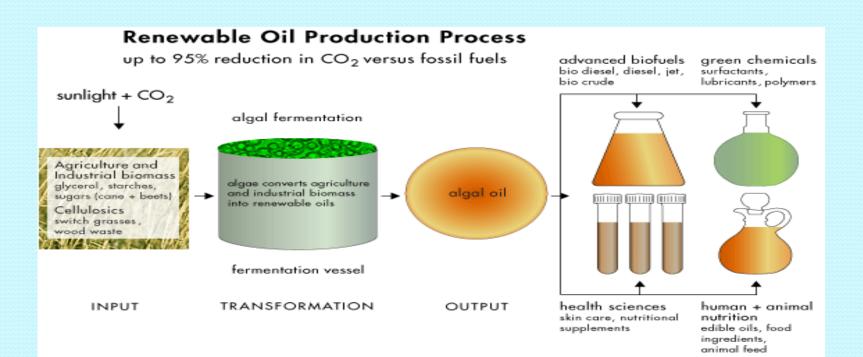




EDGE - BioAcrylic Acid


Efficiency Directed Genome Engineering Massively Parallel Genetic Manipulations Comprehensive & High Resolution Parallel Processing

Acrylic Acid Market Opportunity



Microalgae Converts Biomass to Bio-based Chemicals

- Indirect photosynthesis bio-production
- Process uses microalgae to convert biomass directly into bio-based chemicals and biofuels
- •A process performed in standard commercial fermentation facilities cleanly, quickly, and at low cost and large scale
- •Manufactured thousands of gallons of oil and hundreds of tons of bio-chemicals for replacing fossil petroleum and plant oils in a diverse range of products from oleochemicals to cosmetics and food

Summary

- BIO was first organization to endorse Farm Bill's energy title 2001 and 2002
 - Supported the expanded Bio-Prefferred Bill 2008
 - Proposed voluntary labeling program offers potential to expand biobased markets, "USDA Certified Biobased Product," label
- Role of the entire value chain from feedstocks to intermediates (biomonomers and biopolymers) to final products needs to be recognized to achieve maximum potential
- BIO strongly supports the inclusion of biobased intermediates as eligible to receive the label under current rulemaking

World Congress on Industrial Biotechnology

- World largest confernce on industrial biotech
- June 27-30, 2010
- Washington, D.C. –Gaylord
 Resort and Convention Center

- Over 200 speakers
- First year for investor sessions for CEO presentations
- 1,300 attendees----www.BIO.org/worldcongress