

ERS Polyol Opportunity Overview October 2012

Elevance Information Disclosures:

This file, and all of the information contained in its several pages, are the property of Elevance Renewable Sciences.

Company Overview

WHAT WE DO

Elevance Renewable Sciences Inc. is the leader in the chemical conversion of renewable feedstock into a wide range of both 'drop in' and novel specialty chemicals

TECHNOLOGY

Elevance produces a wide range of specialty chemicals from renewable oils using proprietary, Nobel prize winning metathesis technology developed by Dr. Robert Grubbs at Caltech

COMMERCIAL PRODUCTION

Already commercialized, marketed and generated gross profits from first suite of commercial products

Asian JV 180,000mt biorefinery with Wilmar commences production in 2012

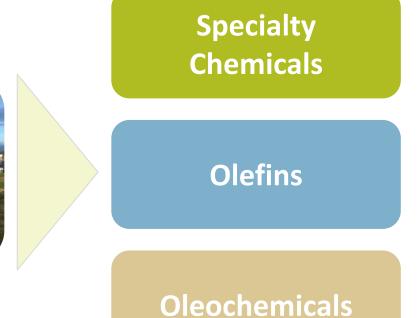
KEY STATS

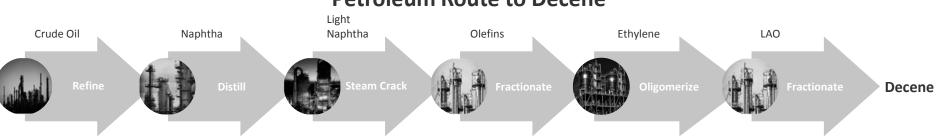
Employees: 140 Founded: 2007 Headquarters: Woodridge, IL

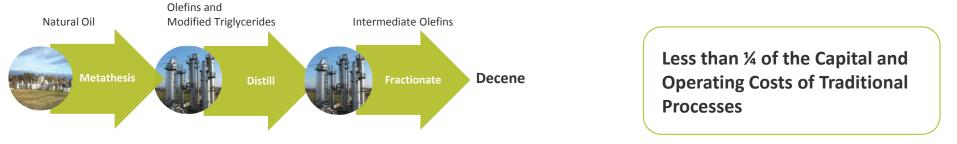
High Performance Specialty and Intermediate Chemicals from Natural Oils

- Variety of Natural Oils
- Widely Available

- Commercial Today
- Low Capital Requirements
- Low Operating Costs

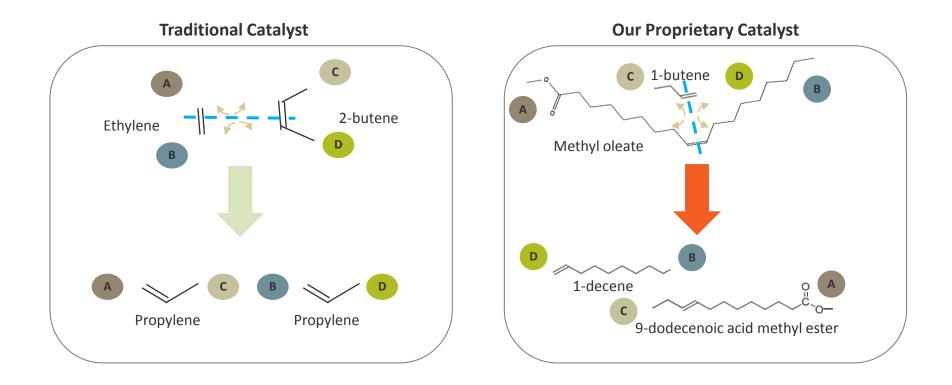

- High Value Product Mix
- Addresses Critical Shortages
- Meets Customer Performance Needs

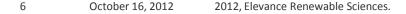



4 October 16, 2012 2012, Elevance Renewable Sciences.

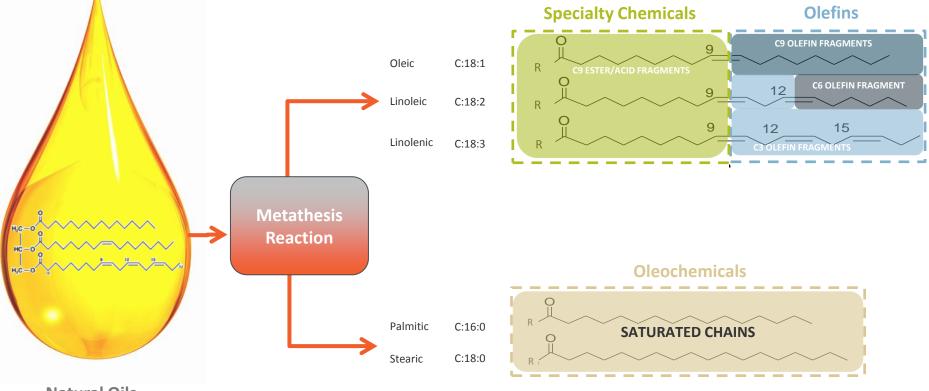
Elevance Advantage: An Elegant Conversion Process

Petroleum Route to Decene


Elevance Route to Decene

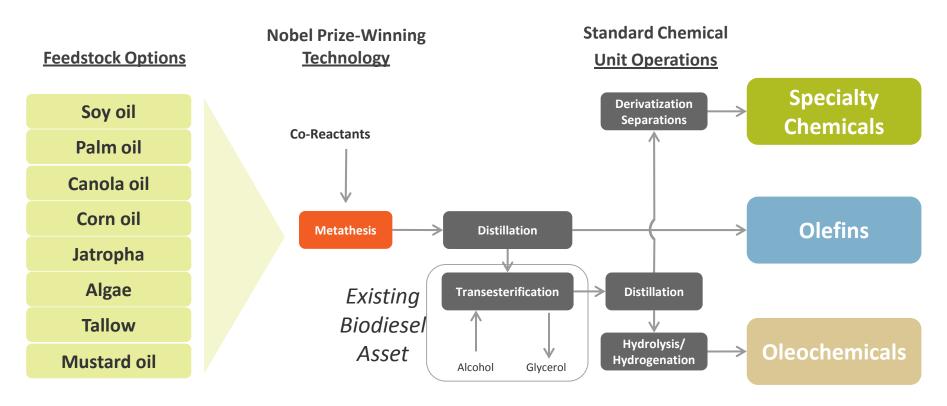

Fewer steps and with lower capital and operating costs

Elevance Advantage: Proprietary Metathesis Technology


Refining natural oils to specialty chemicals and intermediate chemicals using metathesis technology

<u>Elevance Advantage: Leveraging the Inherent Complexity of Plant</u> <u>Oils</u>

- •Traditional processes use small molecules to build more complex molecules
- •The Elevance process reduces costs by leveraging natural plant oil complexity



Natural Oils

Elevance Advantage: Superior Process

Low capital intensity and low cost of productionHigh value product mix

•Technology process proven and *scalable*

Proprietary biorefinery process

<u>Near-Term Large-Scale Commercialization</u> <u>One million metric tonnes from three biorefineries by 2015</u>

Plant #2: Natchez, MS Expected Commissioning: 2014

Capacity: 310,000 MT

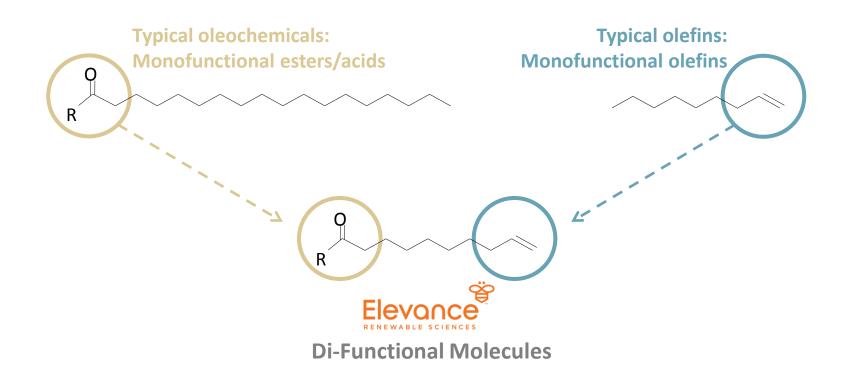
Plant #3: South America / SE Asia

Status: In discussions with petrochemical and agricultural processors to evaluate biorefinery JV and offtake opportunities

Plant #1: Gresik, Indonesia Expected Commissioning: 2012

Capacity: 180,000 MT expandable to 360,000 MT

Accelerated Market Entry through Leading Commercial Partners


Partner	Product	Addressable Market		
	Specialty Polymers	Engineered Polymers & Coatings		
Clariant	Polymer Additives	Engineered Polymers & Coatings		
HUTCHINSON®	Rubber Processing Oils	Lubricants & Additives		
	Greases	Lubricants & Additives		
Stepan 5	Surfactants and Antimicrobials	Consumer Ingredients & Intermediates		
DOW CORNING	Personal Care	Consumer Ingredients & Intermediates		

Specialty Chemicals Based on Novel Di-functional Molecules

Chemicals from the Elevance process combine functional attributes of olefins and oleochemicals in a previously unachievable single molecule

Products Address Critical Customer Needs

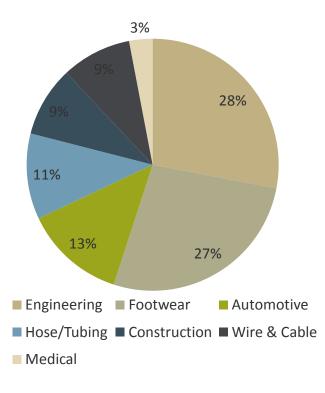
Detergents & Cleaners	 Improved cold water performance Alternative feedstock with pricing/supply dynamics 	and the second
Personal Care Products	 Anti-frizz and shine for leave-in hair care Moisturizing benefits and smoother feel for skin care products 	
Performance Waxes	 Thermal stability Increased fragrance loading 	- 1
Lubricant Base Oils	 Reduction in formulation costs Improved fuel economy 	
Lubricant & Fuel Additives	 Improved lubricity Enhanced cold flow properties 	
Engineered Polymers & Coatings	 Enhanced corrosion, chemical and heat resistance Light weight replacement for metal alternatives 	

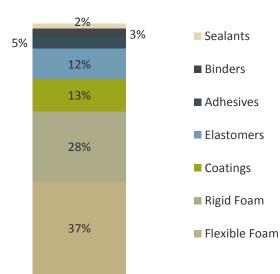
Products specifically target customer desired functional attributes

Engineered Polymers & Coatings: Di-functional Monomers

High performance polymers rapidly replacing metal & *other materials:*

- ✓ Lower weight
- ✓ Easier to process
- ✓ Better performance in difficult environments




Market Landscape: Thermoplastic Polyurethanes (TPU's)

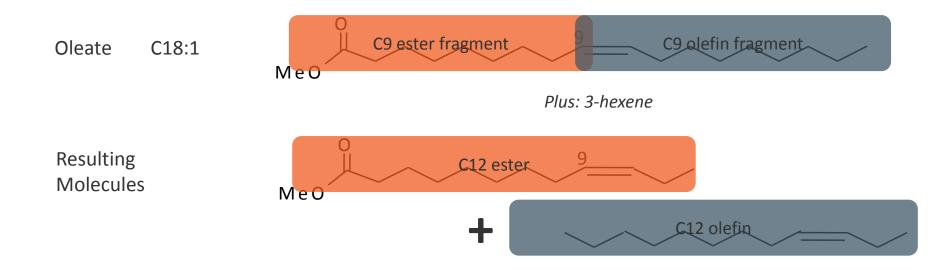
Global TPU Consumption by End Use,

2007 TPU Demand by End-use

End-use market , kMT	EMEA	Americas	Asia- Pacific	Total
Injection	53	30	85	169
Extrusion	41	45	46	132
Adhesives	14	8	23	46
Coatings	4	3	17	23
Total	112	86	172	370

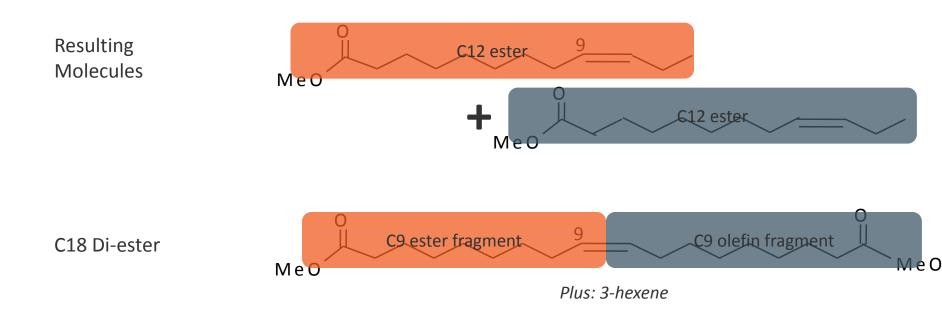
Sources: IAL, several PU articles

Polyurethane Chemistry


PU chemistry uses 3 key ingredients: isocyanates, chain extender (diol), and polyol

- Polyurethanes are synthesized by a poly-addition reaction between polyols & isocyanates
- TPU are segmented linear polymers made from alternating hard (urethane) & soft segments
- A thermoplastic polyurethane (TPU) uses a specific combination of 3 classes of raw materials:
 - Isocyanate (NCO)
 - Difunctional
 - > Chain extender (CE),
 - Low molecular weight diols difunctional monomers
 - ➢ Polyol,
 - Difunctional oligomeric material, OH terminated

Example: Olefin Metathesis for Polyol Precursor Production


• We can utilize the metathesis reaction to convert natural oils into di-functional esters

Example: Olefin Metathesis for Polyol Precursor Production

• We can then utilize self-metathesis to convert methyl 9-dodecenoate into a diester

• We can subsequently deploy standard organic chemistry techniques to form midchain diacids and diols, which can be used as a chain extender or polyester polyol raw materials

Thank You