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Corn ethanol vs. Cellulosic ethanol
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• Mixed sugar fermentation
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Saccharomyces cerevisiae: a workhorse 
strain for industrial ethanol production
 The most widely used yeast since ancient 

times in baking and brewing
 Osmotolerant and ethanol-tolerant
 Numerous genetic/genomic tools are 

available
 Overexpression / Knockout
 Expression of heterologous enzymes

 Cannot utilize xylose
 Not suitable for producing cellulosic biofuels

3



Basic strategy in metabolic engineering of 
xylose fermentation in S. cerevisiae

Scheffersomyces stipitis
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 Natural xylose fermenting
 Low ethanol tolerance

 High ethanol tolerance
 Amenable to metabolic engineering
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Laboratory evolution of an engineered S. 
cerevisiae strain for further improvement

n
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by serial culture 
in 80 g/L of xylose

DA24
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Evaluation
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Comparison of xylose fermentation capability 
between engineered S. cerevisiae and S. stipitis

The engineered S. cerevisiae strain consumed 
xylose almost as fast as  S. stipitis, the fastest 
xylose-fermenting yeast

Engineered S. cerevisiae S. stipitis

6 Ha et al. PNAS, 108:504-509



Why we want to co-ferment cellobiose and 
xylose?

Typical fermentation profile of 
glucose and xylose mixture
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Pathway
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Engineered S. cerevisiae strains ferment 
xylose only after glucose depletion

Lau M. W., Dale B. E. PNAS 106:1368-1373
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Grand scheme of co-fermentation of 
cellobiose and xylose in cellulosic hydrolysate

Cellulosic biomass

Pretreatment Hemicellulose

Xylose

Cellulose 

Cellobiose 

Glucose 

Xylose

Xylitol 

Xylulose 

PPP

Glycolysis Ethanol 
S. cerevisiae
DA24-16BT3

XYL1 and mXYL1

XYL2

XKS1β-glucosidase
(gh1-1)

Cellodextrin transporter
(cdt-1)

Time

[G
lu

co
se

& 
Xy

lo
se

]

[E
th

an
ol

] 

Time
[C

el
lo

bi
os

e
& 

Xy
lo

se
]

[E
th

an
ol

] 

Ha et al. PNAS, 108:504-509

Cellulases

β-glucosidase
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1. Lower 
enzyme cost 

2. Higher productivity3. Enable a continuous process

4. Facilitate efficient and 
rapid chemical production 

Cellobiose

Xylose

Xylose XylitolXR

Cellobiose
transporter

β-glucosidase

NADPH

Glucose

Xylose consumption ↑
Supply of NADPH ↑

D-10-BT



Synthesis of engineered yeast capable of co-
fermenting cellobiose and xylose simultaneously

Cellobiose

Glycolysis

β-Glucosidase
NCU00130 (gh1-1)

Transporters from N. crassa
NCU00801 (cdt-1)
NCU00809
NCU08114

Outside Cell Inside Cell

Xylose PPP & 
Ethanol Production

XYL1/XYL2/XYL3

Galazka et al. Science 330:84-86
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Co-fermentation of cellobiose and xylose by 
an engineered S. cerevisiae (DA24-16BT3)

OD
(A600)

Ethanol 
(g/L)

YEtOH
(g/g)

PEtOH
(g/L·hr)

Xylose 40 16 13 0.33 0.28
Cellobiose 40 17 13 0.33 0.28
Cellobiose/xylose 40/40 23 32 0.40 0.70

Xylose
(40)

Cellobiose 
(40)

Cellobiose/Xylose
(40/40)
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Co-fermentation of glucose, cellobiose, and 
xylose by strain DA24-16BT3 and S. stipitis

OD
(A600)

Ethanol 
(g/L)

YEtOH
(g/g)

PEtOH
(g/L·hr)

DA2416-BT3 25 48 0.38 0.99
S. stipitis 19 25 0.38 0.55

DA24-16BT3 strain S. stipitis CBS 6054
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Co-fermentation by an engineered industrial 
strain (HP111BT)

Low Initial OD
(OD ~1.0)

High Initial OD
(OD ~10.0)

YE/S = 0.38 g/g
PE =  1.11 g/Lh

YE/S = 0.39 g/g
PE =  2.00 g/Lh
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Xylitol: a functional sweetener and chemical
 A very popular food 

additive in Asian market
 Sugar substitute with lower 

calorie (2.4 cal/g)
 Better sensory with a cooling 

effect
 Good for diabetic patients 

and prevents dental caries
 Selected as one of the top 

value-added chemicals 
from biomass by US-DOE
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Xylitol production through co-utilization of 
xylose and cellobiose

Glucose

Xylose

Xylose XylitolXR
NADPH

D-10

Cellobiose

Xylose

Xylose Xylitol
XR

Cellobiose
transporter

β-glucosidase

NADPH
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Xylose consumption ↑
Supply of NADPH ↑

D-10-BT

Current process Co-fermentation process
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Enhanced production of xylitol without 
glucose repression
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Glucose/Xylose Cellobiose/Xylose

OD
(A600)

Xylitol
(g/L)

PXylitol
(g/L·hr)

Xylitol
production per 

sugar consumed 
(g/g)

Fermentation 
conditions

Glucose/Xylose 20/20 10 13 0.28 0.67
80 rpm, 50mL

Cellobiose/Xylose 20/20 13 19 (46%↑) 0.40 (43%↑) 1.0



pH controlled bioreactor fermentation

D-10 D-10-BT

Cell
mass
(g/L)

Xylitol
(g/L)

PXylitol
(g/L-hr)

Xylitol
production per 

sugar consumed 
(g/g)

Fermentation 
conditions

glucose/xylose 40/100 5.5 49 0.92 0.77 500 rpm, 2vvm
pH 5.5cellobiose/xylose 40/100 7.4 85 (73%↑) 1.60 (74%↑) 1.4

53H

Glucose/Xylose Cellobiose/Xylose



Why do we study galactose metabolism?
 Galactose is a major sugar in marine biomass

 Marine plant biomass has several attributes that would 
make it an attractive renewable source for the 
production of biofuels
 Higher production yields per unit area
 Can be depolymerized relatively easily compared to 

lignocellulosic biomass
 Higher carbon dioxide fixation rates than terrestrial biomass
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Galactose metabolism is tightly regulated in 
S. cerevisiae (strong glucose repression)

From Ideker et al. Science (2001) 292, 929-934
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Improvement of galactose fermentation 
through co-fermentation with cellobiose
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Comparison of sequential fermentation (A) 
and co-fermentation (B)

OD
(A600)

Ethanol
(g/L)

YEtOH
(g/g)

PEtOH
(g/L·hr)

glucose/galactose 
(40 g/L and 40 g/L ) 16 21 0.34 0.60

cellobiose/galactose 
(40 g/L and 40 g/L )

22 
(38% ↑)

27
(29% ↑)

0.36
(6% ↑)

0.74
(23% ↑)

21 Ha et al. Appl. Environ. Microbiol. 77,5822-5826



Numerous applications of co-fermentation for 
producing fuels and chemicals

Cell

Fuels

Diversification 
of products

Chemicals
Organic acids
Diacids
Dialcohols
Sugar alcohols (xylitol)
Sugar acids

Glucose

Cellobiose 
+ Xylose

Extension of 
substrates

Ethanol
Butanol
Fatty acid
Hydrocarbon
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Cellobiose 
+ Galactose



Summary
 Optimization of the xylose metabolic pathway and laboratory 

evolution drastically improved ethanol yield and productivity of 
engineered S. cerevisiae

 Co-fermentation of non-fermentable carbon sources (cellobiose and 
xylose) is possible by metabolic engineering
 Cellodextrin transporter and intracellular β-glucosidase

 Engineered industrial S. cerevisiae showed impressive ethanol 
production capability

 Cellobiose and galactose co-fermentation is also feasible

 Various chemicals can be produced using the co-fermentation 
technology
 Enhanced production of xylitol from cellulosic hydrolysate
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